contenido volumétrico de agua

II Seminario Técnico Agronómico ‘Sistemas de automatización del riego localizado y herramientas de seguimiento’

II Seminario Técnico Agronómico ‘Sistemas de automatización del riego localizado y herramientas de seguimiento’Participamos en el II Seminario Técnico Agronómico ‘Sistemas de automatización del riego localizado y herramientas de seguimiento’ organizado por Coexphal, la Universidad de Almería, INIA y Cajamar Caja Rural, tendrá lugar el día 3 de diciembre a las 16 horas en la Estación Experimental de Cajamar Caja Rural  

En este seminario se mostraran resultados del proyecto de investigación “Integración de sensores de agua en el suelo en una estrategia estacional de reprogramación automatizada del riego localizado” (RTA2013-00045-C04-03), financiado por el Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), en el que participamos. Y hablaremos del «Establecimiento de set-points con sondas de humedad y CE del suelo para ajustar el riego»

Es necesario confirmar la asistencia a través del e-mail estacionexperimental@fundacioncajamar.com o llamando al teléfono 950 580 548.
Más información y programa en este enlace

Convertir la CE aparente del suelo en la CE de la solución del suelo (de Bulk CE a Pore Water CE)

sensores CE del sueloLos sensores instalados en campo únicamente son capaces de medir la CE aparente (σb, Bulk). Se han realizado numerosos trabajos y esfuerzos para determinar la relación entre σb y la CE de la solución del suelo (σw).  Hilhorst (2000) aprovechó la relación lineal entre la permitividad dieléctrica aparente del suelo (εb) y la σb para permitir la conversión desde σb a σw si se conoce εb. Los sensores GS3 y 5TE miden εb y σb casi simultáneamente en el mismo volumen de suelo. Son, por tanto, muy adecuados.

La CE de la solución del suelo se puede determinar a partir de (ver Hilhorst, 2000) la ecuación (1)

σw= εw σb/ εb – εσd=0  (1)

dónde σw es la CE de la solución del suelo (DS/m). εp es la fracción real de la permitividad dieléctrica de la solución del suelo (adimensional). σb es la CE aparente (dS m) medida directamente por el sensor. εb es la fracción real de la permitividad dieléctrica del suelo aparente (adimensional). εσd=0 es la fracción real de la permitividad dieléctrica cuando σb=0 (sin unidades). εw tiene un valor cercano a 80

Se puede obtener un valor más preciso a partir de la temperatura del suelo, usando la ecuación (2) dónde:

εp= 80,3 – 0,37(Tsoil – 20) (2)

Tsoil es la temperatura del suelo (ºC) medida con un sensor de temperatura colocado junto al sensor que mide la CE aparente (tal y como diseña Decagon sus sensores de CE del suelo). εb también la miden la mayoría de sensores de grado de investigación.  εσb=0 es un término compensatorio libre que representa la permitividad dieléctrica del suelo cuando el EC=0. Hilhorst (2000) recomienda que εd = 4,1 se utilice como valor genérico. Hilhorst (2000) proporciona un método simple y fácil para determinar εσb=0 para cada suelo individual, lo que mejora, la mayoría de las veces, la precisión del cálculo de σw.

Las pruebas de Decagon Devcies Inc. indican que el método anterior para calcular σw proporciona una buena precisión (±20%) en suelos y sustratos con contenido de agua elevado. Pero, a medida que el contenido de humedad disminuye el denominador de la ecuación (1) se hace más pequeño, lo que lleva a grandes errores potenciales en el cálculo.

Para mejorar los resultados se recomienda utilizar la ecuación Hilhorst cuando el contenido de agua es elevado y a continuación calcular la CE de la solución del suelo a menor contenido de agua suponiendo que la sal permanece en el suelo mientras se extrae el agua. Usando esta suposición (3)

σp= σe (qs/θ) (3)

dónde q es el contenido volumétrico de agua del suelo y θs es el contenido de agua en saturación, que se puede calcular a partir de la densidad aparente del suelo (4)

θs= 1 – (ρbs) (4)

ρb es la densidad aparente del suelo (Mg/ m3) y ρs es la densidad de un sólido (2,65 Mg/m3 para suelos minerales).

La Conductividad Eléctrica (CE), entrada 8

Jornada «Selección de especies, manejo del agua y eficiencia energética en cubiertas y fachadas verdes»

cubiertas vegetales y contenido de humedad LabFerrerEl próximo viernes 13 de noviembre de 2015 en el IRTA de Torre Marimon (08140 Caldes de Montbui) colaboramos en la Jornada «Selección de especies, manejo del agua y eficiencia energética en cubiertas y fachadas verdes» con el IRTA y el GREA Innovació Concurrent – UdL

El empleo  de vegetación en terrazas y fachadas de edificios ha despertado mucho interés en zonas urbanas por las ventajas potenciales que pueden tener. Para diseñar y construir una cubierta verde en clima mediterráneo es imprescindible conocer su ubicación, la disponibilidad de agua y la estructura del edificio para seleccionar las especies, el sustrato, el tipo de riego y su manejo.
En esta jornada se expondrán experiencias de manejo del riego con sensores ambientales y de humedad del suelo (VWC) realizadas en EEUU tanto en producción de planta de vivero como en cubiertas verdes.
También se expondrán resultados de estudios de eficiencia energética en cubiertas y fachadas verdes realizadas en condiciones de clima continental como es el caso de Lleida.
Y finalmente se expondrán los resultados de los estudios para determinar las especies que mejor se adaptan a condiciones de riego mínimo.

Con la ayuda de este enlace podeis obtener más información sobre la jornada, horario, inscripción …

La CE del Extracto Saturado: El método tradicional

conductividad electrica del extracto de pasta saturado
imagen de https://www.drcalderonlabs.com/

La CE del extracto saturado (Saturation Extract EC, σe) proporciona con exactitud la cantidad de sal presente en el suelo y se puede convertir a salinidad del suelo. Esta es la forma tradicional de medir la CE.

Partiendo de una muestra de suelo, se añade agua desionizada hasta conseguir una pasta saturada, se extrae el agua, y a continuación se mide la CE de la solución extraída.
La mayoría de los valores de CE publicados en la bibliografía suelen ser casi siempre de CE de extracto saturado.

La Conductividad Eléctrica (CE), entrada 7

La Conductividad Eléctrica aparente

EC bulk CE aparente LabFerrerLa Conductividad Eléctrica CE Aparente (Bulk EC, σb) es la conductividad eléctrica del suelo no tratado (bulk soil, suelo, agua y aire). La CE aparente es la única medida de CE que se puede registrar de forma continua in situ.
Todos los sensores instalados en el suelo miden la CE aparente.

A partir de los valores medidos de CE aparente y con la ayuda de ecuaciones empíricas o teóricas se puede determinar la CE de la solución del suelo o del extracto saturado (σe).

La Conductividad Eléctrica (CE), entrada 6

 

Sensores y dataloggers Decagon, Apogee y UMS para la monitorización del sistema SPA (Suelo-Planta-Atmósfera)

El estado hídrico de la planta depende del ajuste del flujo de agua a través de la planta como respuesta al gradiente de energía o potencial hídrico que existe entre el suelo y la atmosfera.

EM50GPara que la planta funcione, el ritmo de evaporación de vapor de agua a través de los estomas de las hojas (TRANSPIRACIÓN) debe compensarse, lo antes posible, por el flujo de agua a través del sistema radicular (ABSORCIÓN).

Desde este punto de vista, la TRANSPIRACIÓN del cultivo se puede expresar cómo:

T = (ψha) /Rh = (ψsh)/Rr  (Ecuación 1)  Dónde:

ψh es el potencial hídrico de la hoja

ψa es el potencial del vapor de agua en la atmosfera

Ψs es el potencial hídrico del suelo

Rh es la resistencia estomática y del aire al flujo de vapor (hoja-aire)

Rr es la resistencia equivalente a la circulación del agua entre el suelo-raíces, raíces-xilema y raíces-hojas

El potencial hidrico foliar será el resultado de la combinación de todos los parámetros restantes de la Ecuación 1.

Si podemos conseguir medidas directas de estos parámetros seremos capaces de predecir con mayor exactitud el grado de estrés hídrico y la respuesta de la planta, y también podremos considerar diferentes escenarios, por ejemplo: con diferentes condiciones ambientales, variaciones del contenido de humedad del suelo y tamaño del dosel vegetal (LAI y biomasa)

Parámetro

Sensor y medida

T

Transpiración

ESTACIÓN MICROCLIMÁTICA (Decagon)

Medida directa de los parámetros climáticos utilizados para calcular el balance de energía sobre el dosel vegetal utilizando la ecuación de Penman-Monteith y aplicando el concepto del Coeficiente de Cultivo (kc)

ψa

Potencial del vapor de agua en la atmosfera

SENSOR VP-4 (Decagon)

Medida de la temperatura y humedad relativa del aire, presión de vapor y presión barométrica

ψs

Potencial de agua en el suelo

 

TENSIÓMETROS DE PRECISIÓN (UMS)

Medida directa del potencial hídrico del suelo (0 a 85kPa)

SENSOR MPS-6 (Decagon)

Medida directa del potencial hídrico del suelo (9 a 100000kPa)

SENSORES   CAPACITIVOS (Decagon)

Medida del contenido volumétrico de agua del suelo. Se puede relacionar con el potencial y con el grado de disponibilidad

SENSORES DE CE (Decagon)

El potencial de agua en el suelo es la suma del matricial y osmótico, principalmente. Las sondas 5TE y GS3 de Decagon miden la Conductividad Eléctrica (CE) de la solución del suelo, linealmente relacionada con el potencial osmótico

Rh

Resistencia estomática

PORÓMETRO DE HOJA SC-1

Medida directa de la Conductancia estomática (Ch = 1/Rh)

 

Rr es la resistencia equivalente a la circulación del agua entre el suelo-raíces, raíces-xilema y raíces-hojas

 

CONDUCTIVIDAD HIDRÁULICA DEL SUELO (Decagon)

Medida directas y generación de la curva de Conductividad hidráulica del suelo en función de la humedad del suelo. En determinadas situaciones, la limitación a la absorción de agua por las raíces se debe a un descenso muy brusco de la capacidad de reponer el agua cerca de los pelos capilares (ver Environmental Biophysics)

 

La CE de la solución del suelo: lo que muchos suponemos que medimos

ce de la solución del suelo labFerrer

La Conductividad Eléctrica CE de la Solución del Suelo (Pore Water EC) o del agua del suelo (σw) es la CE del agua de los poros del suelo. Los investigadores, técnicos y vendedores de sondas, entre otros, a menudo confunden el valor procedente de un sensor que mide la  CE del suelo con la CE de la solución del suelo. NO es lo mismo

Idealmente, bastaría con medir la CE del agua de los poros del suelo in situ. Pero, aunque es fácil imaginarlo, esto sensores superdiminutos deberían de acertar de lleno en un poro del suelo. Obviamente, no es posible medir la CE del agua en esta escala.

De hecho, la única forma de medir la CE del agua de los es extrayendo un muestra de agua del suelo y a continuación medir la CE de esta muestra.

La Conductividad Eléctrica (CE), entrada 5

Más de una forma de medir la CE

Existen tres formas de medir y expresar la CE del suelo. Tenemos:

CE de la solución del suelo, Pore EC (σw)
CE aparente, Bulk EC (σb)
CE del extracto saturado, saturation extract EC (σe)

Las tres son DISTINTAS, aunque están relacionadas pero necesitamos herramientas para poder convertir una en otra.
Y con el fin de entender los datos que tenemos es necesario saber qué tipo de CE estamos midiendo.

valores de CE decagon LabferrerSi estamos Fertilizando, necesitamos saber si el abono se mantiene en la zona radicular o si por el contrario hay lixiviación de nutrientes. Esta es una de las aplicaciones clave y la gráfica muestra
• Indicación clara de la pérdida de nutrientes
• Indicación clara del drenaje

La Conductividad Eléctrica (CE), entrada 4

Unidades de Medida de la CE

La unidad del SI (Sistema Internacional) para la Conductancia Eléctrica es la Siemen, por lo que la CE  tiene unidades de S/m. En bibliografia antigua, se encuentra expresada en mho/cm.
1 mmho/cm es igual a 1 mS/cm, pero como el SI desaconseja usar submúltiplos en el denominador, la unidad se cambia a deciSiemen por metro (dS/m), que es numéricamente equivalente a mmho/cm o mS/cm.

Clasificación (USDA) de los suelos según el valor de CE

valores de CE para agricultura LabFerrer Decagon CELa Conductividad Eléctrica (CE), entrada 3

Sales y Cultivos ¿Cuál es el problema?

salinidad CE suelo sondas humedad del suelo LabFerrerMucha gente ha aplicado demasiado fertilizante, por lo general por accidente, y ha matado la hierba e incluso las plantas. Solemos decir que el fertilizante ha quemado las plantas, pero no es el nutriente en sí mismo el que causa el daño, es su efecto sobre el agua.                     Las plantas absorben agua, pero no las sales en una cantidad apreciable. Al añadir sal al suelo a través de la fertilización y el riego, se van concentrando.
La sal puede causar una gran variedad de problemas, por ejemplo, el Na+ puede alcanzar concentraciones tóxicas para las plantas. Evidentemente, algunas plantas son más sensibles que otros a la sal.  El rendimiento de las judías se ve afectado sí la CE del extracto saturado (CEe) >2 dS/m, mientras que la cebada se puede cultivar hasta con valores de CEe= 16 dS/m sin disminución del rendimiento.

Cultivos muy Sensibles a la Salinidad: trébol rojo, guisante, judías, pera, naranja
Moderadamente Tolerante: trigo, tomate, avena, alfalfa, patata
Altamente Tolerantes: palmera datilera, cebada, remolacha azucarera, algodón, espinacas

La Conductividad Eléctrica (CE), entrada 2

Ir arriba