Microclima

Cálculo de los grados día y la integral térmica

Cómo calcular los grados día de desarrollo y la integral térmica

Es imprescindible disponer de una estación meteorológica precisa que nos proporcione datos para calcular parámetros tan importantes como los grados días de desarrollo (growing degree days, GDD) y la integral térmica.
Los cálculos de GDD ahorran tiempo y pueden aumentar el rendimiento porque son una forma científica de saber cuál es el mejor momento para por ejemplo realizar medidas de control de plagas y/o enfermedades.

En esta presentación, el Dr. Colin Campbell de METER Group explica los conceptos: GDD e integral térmica. Y explica dos formas diferentes de calcularlos.

¿Qué son los GDD y la integral térmica?

En realidad, los GDD y la integral térmica son una manera de hacer coincidir el reloj de la planta con nuestro reloj. Nos ayudan a comprender lo que está sucediendo con la planta y podemos predecir cosas como nascencia, floración, etc. Y la forma en que lo hacemos es a través de esta ecuación, que es bastante simple (Ecuación 1).

Podemos calcular la integral térmica (Tn) como el sumatorio de la temperatura media (es decir, la suma de T máxima y T mínima y dividido por dos) desde el día 1 al día n, menos la temperatura base (Tbase), multiplicado por el tiempo (∆ t). La Tbase es el umbral de temperatura por debajo del cual no se produce desarrollo vegetal. El desarrollo no se invierte. Es decir, si la temperatura es inferior a la temperatura base, la planta no invierte su desarrollo, simplemente no progresa.
De modo que el análisis se basa en la diferencia entre la temperatura media y la temperatura base. Y vamos obteniendo este valor de forma diaria. Y a continuación, seguimos sumando hasta alcanzar un valor que nos indica que hemos progresado de una etapa a otra.

Ejemplo de integral térmica en trigo

Podemos ver un ejemplo con trigo. Para emerger, la planta de trigo necesita 78 grados día desde siembra hasta emergencia. Así que con la Ecuación 1, y después de haber sumado los grados día suficientes, calculamos que el trigo ya estaba pasando de la etapa de siembra a una etapa de postemergencia. Después, en la parcela medimos el cultivo y comprobamos que las previsiones eran correctas. No todas las plantas de trigo habían emergido, pero el promedio estuvo bastante cerca.

Aproximaciones de cálculo

¿Qué ocurre si trasladamos el cálculo de la integral térmica a la tecnología actual?. Por ejemplo a la estación meteorológica ATMOS 41 que proporciona medidas de temperatura cada 5 minutos o incluso cada minuto. Entonces, parece más adecuado procesar nuestros datos de integral térmica con esta ecuación (Ecuación 2).

Podemos hacer el sumatorio diario como en la Ecuación 1, pero nuestra aproximación es integrar la temperatura en un intervalo de tiempo pequeño T (t) (por ejemplo 5 minutos) menos la temperatura base (Tb). Y luego, simplemente basta con integrar esto a lo largo del día.

Representación gráfica

Otra pregunta es ¿Qué representan estos datos en forma gráfica? Realmente ¿Cómo se ve esta ecuación? ¿Cuál es la bondad de este análisis?. La explicación gráfica se muestra en la siguiente figura.

La temperatura está en ordenadas y el tiempo en abcisas, un periodo de 24 horas. Esta es nuestra etapa diaria, en la que recopilamos esta información para la integral térmica. Y también están todos los parámetros de la ecuación: la temperatura máxima (Tmax), la temperatura mínima (Tmin), la temperatura media (Tave) y la temperatura base (Tbase). La curva representa el típico cambio de temperatura diurno. Va desde un mínimo a primera hora de la mañana hasta un máximo en algún momento de la tarde.

Vamos a comparar los dos enfoques de cálculo
Por un lado, tenemos la temperatura media y la temperatura base. El rectángulo es la integral térmica para ese día. Pero si empleamos datos de temperatura obtenidos en incrementos de tiempo bastante pequeños (como los de ATMOS 41).

  • ¿No podríamos simplemente integrar durante el día y a continuación recopilar toda la información sobre la integral térmica que está debajo de esta curva (la temperatura real) y por supuesto, restando la temperatura base?
  • ¿Cuánta diferencia hay entre estas dos formas de cálculo?
  • ¿Y cuáles son las implicaciones de no poder medir nuestra temperatura con mucha precisión?

Estas preguntas se resolverán en una próxima entrada del blog y otro vídeo de Colin Campbell.

Este es el enlace para ver la presentación y el vídeo originales.

Cómo medir la Transpiración

Cálculo de la transpiración

Con mucha frecuencia nos preguntan si para calcular la transpiración es suficiente con medir la conductancia estomática. Y la respuesta es no. En esta entrada se argumenta esta respuesta y también qué es necesario para estimar la conductancia total y, por lo tanto, la evaporación de las hojas. Para calcular la transpiración (E) se emplea la siguiente ecuación,

donde gv es la conductancia total del vapor de agua desde el interior de la hoja hacia el exterior, Cvs es la concentración de vapor de agua en el interior de la hoja y Cva es la concentración de vapor de agua en el aire.

El término de conductancia (gv), necesario para resolver la ecuación de la transpiración, es el resultado de la combinación de dos variables. Ya que para mover el vapor de agua desde el interior de la hoja a la atmósfera, es necesario mover el agua a través de los estomas y la cutícula, y también a través del propio aire (Figura 1).

Figura 1. Diagrama ampliado del un estoma de una hoja.

El vapor de agua se representa en color azul. Las células del parénquima en empalizada y las células esponjosas del mesófilo están en color verde. El vapor de agua del interior de la hoja se puede mover hacia el exterior a través de los estomas y también a través de la cutícula cerosa. La mayoría de las veces, cuando los estomas están abiertos, el agua se mueve a través de ellos hacia la atmósfera. Este proceso se denomina conductancia estomática al vapor de agua (gvs).

Los estomas y la cutícula no son las únicas barreras para mover el vapor de agua desde el interior de la hoja hacia la atmósfera. El aire exterior de la hoja también opone resistencia al vapor de agua. Y este proceso se llama conductancia del aire al vapor de agua, o conductancia de la capa límite (gva). Tanto gvs como gva actúan como resistencias de un circuito eléctrico, oponiendo resistencia al movimiento del vapor de agua. Y actúan en combinación (como las resistencias en serie) para limitar el movimiento del agua del interior de la hoja hacia el aire de la atmósfera.

Como medir la transpiración, la conductancia estomática

Para medir la transpiración es necesario conocer la conocer las conductancias gvs y gva. Para obtener la conductancia estomática gvs, se puede usar un porómetro, como el Porómetro SC-1 de METER Group. Ya que, no hay muchas opciones para medir la conductancia estomática. No se puede calcular. Y su estimación, aunque es posible, no es un buen método. Por lo que la mejor opción es medirla con la ayuda de un porómetro.

Medida de la conductancia estomática con el Porómetro SC-1

La conductancia de la capa límite

Para obtener el siguiente valor de conductancia, gva, se puede usar esta ecuación simplificada (Ecuación 2).

En la Ecuación 2, la conductancia al vapor del aire (gva) es igual a una constante (0,135) por la raíz cuadrada de la velocidad del viento sobre la hoja (u) dividida por la dimensión característica de la hoja (d).

u = velocidad del viento en una hoja
d = dimensión característica de la hoja (0,72 w), siendo w la anchura de la hoja

Para obtener estos valores, primero es necesario medir la velocidad del viento a través de la hoja con un anemómetro, que proporciona el valor de u. En este caso, tendría que ser un anemómetro de pequeño tamaño. Y también es necesario obtener la dimensión característica de la hoja (Figura 2). Para esto basta con medir el ancho de la hoja en la dirección del viento y multiplicarlo por la constante 0,72.

Figura 2. Diagrama de una hoja donde w es el ancho de la hoja en la dirección del viento.

Con estas dos variables, se puede estimar la conductancia del vapor al aire (gva).

La conductancia del sistema

Una vez obtenidos gva y gvs, hay que combinar estas conductancias para obtener un valor real para la conductancia del sistema (gv). La ecuación 3 muestra cómo combinar las conductancias anteriores.

Ecuación 3 (simplificada para dos resistencias en serie)

Concentración de vapor en la superficie

Y ahora que conocemos el valor de gv, es necesario calcular las dos concentraciones de vapor que se muestran en la Ecuación 1. La concentración de vapor en la superficie es igual a la presión de vapor de saturación a la temperatura de la hoja dividida por la presión del aire (Ecuación 4).

Ecuación 4

Es fácil calcular ambos valores. La presión del vapor de saturación a la temperatura de la hoja viene dada por la fórmula de Tetens (Ecuación 5).

Ecuación 5

donde b es 17,502 y c es 240,97 ℃ y T es la temperatura de la hoja. En este vídeo, se puede ver con más detalle cómo hacer este cálculo. La Ecuación 6 muestra cómo obtener Pa o la presión del aire.

Ecuación 6

donde A es la altitud de la localización de la hoja.

Concentración de vapor en el aire

El otro valor necesario es Cva (Ecuación 7).

Ecuación 7.

Donde (es) es la presión de vapor de saturación a la temperatura del aire (Ta) calculada con la Ecuación 5 y T que ahora es la temperatura del aire y hr es la humedad relativa. Se debe medir la humedad relativa, la temperatura del aire y la temperatura de la hoja. Una vez que se miden y calculan todos estos parámetros, basta simplemente con incorporarlos a la Ecuación 4 (Cvs) y la Ecuación 7 (Cva).

Al conocer Cvs y Cva, se pueden introducir en la Ecuación 1 y resolver E: la transpiración de la hoja.

Resumen: Cómo medir la transpiración de las hojas

A modo de resumen, para estimar la transpiración es necesario medir bastantes variables. A pesar de que la fórmula (E = gv (Cvs – Cva) es sencilla. Vamos a ncesitar:

Gvs – Conductancia estomática (usar un porómetro como el SC-1)
TL – Temperatura de la hoja (usar un sensor de temperatura por infrarrojo IRT)
Ta – Temperatura del aire (usar una estación meteorológica ATMOS 41)
h – Humedad relativa (usar una estación meteorológica ATMOS 41)
A – Altitud (buscar por ejemplo en internet)
u – velocidad del viento * (m / s) (usar una estación meteorológica ATMOS 41)
w – anchura de la hoja (usar una regla pequeña)

* NOTA: Para la velocidad del viento, puede usar la estación meteorológica ATMOS 41, pero depende de dónde se encuentre la hoja. Si la hoja está próxima al suelo y la estación ATMOS 41 está a 2 m, hay que corregir la altura. Existe una ecuación para estimar la velocidad del viento hasta la localización de medida. Disminuye exponencialmente a medida que nos acercamos a la superficie.

El texto original de esta entrada lo podéis encontrar en este enlace

Guía de mantenimiento ATMOS 41

Recomendaciones de instalación y mantenimiento ATMOS 41 y el sensor PHYTOS 31

La estación meteorológica ATMOS 41 de METER Group incorpora 12 sensores meteorológicos en un solo dispositivo compacto. Es decir, no tiene partes móviles ni cableado excesivo. Por lo que, la instalación y el mantenimiento se han simplificado al máximo.

El sensor de humectación de hoja PHYTOS 31 de METER Group mide tanto el inicio como la duración de la humectación en la superficie foliar. Y es de gran utilidad para elaborar avisos fitosanitarios o por ejemplo para planificar la aplicación de productos fitosanitarios foliares.

La guía de mantenimiento de la estación ATMOS 41 aborda diferentes áreas, desde la garantía y servicio técnico, hasta las recomendaciones para instalar la estación ATMOS 41 y el sensor PHYTOS 31. También se comenta como realizar la ficha de instalación, el registro de los METADATOS y la cualificación in situ de la instalación de la estación meteorológica.

Características técnicas de la estación meteorológica ATMOS 41

ATMOS 41 proporciona medidas de 14 parámetros ambientales en un solo equipo. Y además, se instala de forma rápida y sencilla, y solo tiene un cable. Como se indica en la guía de mantenimiento ATMOS 41, principal requisito es que la estación esté nivelada en la parte superior de un mástil con visión del cielo directa. Los sensores que incorpora y sus caracteríticas son los siguientes:

La guía de mantemiento de la estación meteorológica ATMOS 41 se puede descargar en formato pdf a través de este enlace

MEDIDA DE LA RADIACIÓN SOLAR

La radiación solar en la superficie de la tierra

La RADIACIÓN SOLAR es la cantidad de radiación que llega sobre un plano horizontal en la superficie terrestre. Cuando la radiación atraviesa la atmósfera para llegar a la superficie terrestre, una parte se dispersa; otra se refleja; y otra la absorben los gases, las nubes y el polvo atmosférico. El espectro de la radiación solar engloba la radiación de onda corta, esto es:

  • Radiación Ultravioleta (280 a 400 nm)
  • Radiación Visible (400 a 700 nm)
  • Infrarrojo cercano y medio (700 a 4000 nm)

En un día despejado, la radiación solar constituye aproximadamente el 75% de la radiación extraterrestre que llega al exterior de la atmosfera. Mientras que en un día nublado este valor disminuye debido a que la radiación se dispersa en la atmósfera. Sin embargo, incluso con una nubosidad densa, aproximadamente el 25% de la radiación extraterrestre todavía puede llegar a la superficie terrestre, principalmente como radiación difusa de la atmósfera. 

La Irradiancia o la radiación que recibe un cuerpo situado en la superficie terrestre se clasifica en tres componentes: 

  • RADIACIÓN DIRECTA corresponde a los rayos directos del sol.
  • RADIACIÓN DIFUSA es la que se recibe dispersada por el cielo y las nubes.
  • RADIACIÓN REFLEJADA por los cuerpos terrestres. 

Texto adaptado de Evapotranspiración del Cultivo FAO-56. Allen et al. 2006

Piranómetros SP de Apogee Instruments

Los piranómetros SP de Apogee Instruments miden, sobre una superficie horizontal, la suma de los tres componentes de la radiación solar incidente. Tienen un ángulo de visión de 180º y con corrección direccional de coseno. Miden la densidad del flujo de energía radiativa que se expresa en W m-2.  

Todos los sensores de Apogee Instruments son de calidad científica, Clase C (ISO9060:2018), con calibración trazable y 4 años de garantía. Catálogo de los sensores online

Modelos según el tipo de detector, de Célula de Silício o de Termopila. 

CÉLULA DE SILÍCIO:

Estos sensores tienen un intervalo de calibración espectral de 360 – 1120nm. La respuesta es muy rápida pero su error es superior en condiciones nubladas (del 10 al 15%). Sólo miden la radiación incidente. Es decir, no se pueden utilizar para medir radiación reflejada ni luz artificial. Y además son económicos.

TERMOPILA

Disponen de un intervalo de calibración espectral superior 385 – 2105 nm y menor error. Su respuesta es mejor frente a todo tipo de condiciones ambientales. Por lo que son comparables a los piranómetros de alta gama pero más económicos. Recomendables para medidas en todo tipo de condiciones ambientales, para medidas con luz artificial o natural alterada y para medidas de reflectancia.

Cálculo de la Integral Diaria de radiación solar y de la Evapotranspiración

El modelo de Penman-Monteith calcula la Evapotranspiración de Referencia (ETo) a partir de la fórmula del balance de energía sobre un dosel vegetal normalizado. Uno de los componentes principales del modelo es la radiación solar incidente.

Para utilizar la fórmula partiendo de datos diarios, la densidad de flujo de energía de la radiación solar debe expresarse como la Integral Diaria de Radiación Solar, en M J m-2 dia-1.  Es decir, si conectamos el piranómetro a un datalogger y medimos cada 60 minutos, hay que pasar de W m-2 tiempo-1 a  M J m-2 dia-1 y sumar todas las medidas diurnas. En el vídeo se explica este cálculo.

Balance de energía en la superficie terrestre

Componentes del balance de radiación solar y térmica en la superficie terrestre

En medidas satelitales de la Observación Terrestre (EO, Earth Observation) muchas veces es necesario realizar validaciones con sensores in situ. La radiación solar es principal componente del balance de energía, junto con el balance de radiación térmica o de onda larga.

Los sensores SP de Apogee Instruments tienen una corrección de coseno para conseguir una óptima respuesta direccional del sensor cuando la radiación solar incide con una elevación menor.    

Cálculo de eficiencia de instalaciones fotovoltaicas

La optimización de sistemas fotovoltaicos necesita medir la radiación solar. También denominada Global Horizontal Irradiance (GHI) o Plane of Array (PoA) Irradiance. Los piranómetros SP de Apogee Instruments son de Clase C, tienen 4 años de Garantía y disponen de salida analógica, SDI-12, con USB ó 4 – 20 mA.

Fácil integración en estaciones meteorológicas

Si el objetivo es integrar un sensor de radiación solar en una red de estaciones meteorológicas, los piranómetros de Apogee Instruments ofrecen diferentes opciones de salida ANALÓGICA y DIGITAL SDI-12. Y además, el diseño de los sensores está pensado para minimizar y facilitar el mantenimiento para asegurar el mejor procedimiento de varificación. 

WEBINAR PARÁMETROS AMBIENTALES. La estación meteorólogica adecuada

¿Cómo podemos elegir la estación meteorológica adecuada?

Elegir la estación meteorológica adecuada para nuestras necesidades entre la multitud de ofertas comerciales puede ser muy difícil. Ya que existen cientos de opciones para la monitorización ambiental que van desde los 180000 € de un sistema de meteorología aeronáutica; a 23000 € en el caso de estaciones meteorológicas automáticas o a los 300 € de algunas estaciones de aficionado. ¿Cómo podemos saber cuál es el sistema más adecuado?. Y por otro lado ¿cuál es la mejor combinación de precio, mantenimiento y precisión para nuestros objetivos?.

Información e inscripciones para el webinar

El próximo 24 de marzo, a las 17:00h (hora local), el Dr. Doug Cobos comentará, el precio de las estaciones meteorológicas de grado de investigación versus el de los servicios públicos. También hablará de las ventajas e inconvenientes de las diferentes soluciones de monitorización del clima para encontrar la opción adecuada. Este seminario web tendrá una duración aproximada de unos 20 minutos, es gratuito y en inglés y se comentarán los siguientes aspectos:

  • ¿Por qué son necesarios los datos meteorológicos? A pesar de que nuestras principales necesidades de medida puedan estár por ejemplo en el suelo o en la planta.
  • ¿Seria necesario considerar la calidad de los datos junto con el mantenimiento y la combinación de parámetros medidos en el análisis de costes?
  • ¿Qué situaciones requieren soluciones de bajo, medio o alto grado? ¿y cuál la máxima calidad?
  • Pros y contras de las diferentes estaciones meteorológicas.
  • ¿Dónde está el punto óptimo para el resultado obtenido y el precio de la estación meteorólogica?

Para registrarse, únicamente hay que acceder al siguiente enlace:

MEDIDAS DE RADIACIÓN PAR EN EL TELÉFONO MÓVIL

Microdatalogger Bluetooth microCache de Apogee Instruments

El microdatalogger microCache AT-100 es un logger unitario, robusto (está alojado en una caja IP67) que se alimenta con baterías AA. Y que además dispone de una conexión inalámbrica Bluetooth para la descarga de datos. Este micrologger es compatible con casi la totalidad de los sensores fabricados por Apogee Instruments. Si se usa como un dispositivo inalámbrico de registro en campo, la unidad puede almacenar datos con un intérvalo de lectura de 1 minuto durante 9 meses. Y con la ayuda de la aplicación (gratuita) Apogee Connect para dispositivos iOS y Android, los datos se pueden ver en el teléfono móvil. Apogee Connect funciona como un medidor en tiempo real, hace gráficos en tiempo real y puede enviar grupos de datos al ordenador.

Registra y visualiza en el móvil medidas de radiación PAR

La pantalla del teléfono puede mostrar por ejemplo la radiación PAR instantánea (PPFD) y la Integral Diaria de luz PAR (Daily Light Integral) de los ensayos de campo, medidas en  invernaderos, acuarios o cámaras de cultivo. La aplicación Apogee Connect puede proporcionar lecturas DLI diarias, semanales y mensuales.

Y lo mismo con los piranómetros para medir la radiación solar global.

El logger microCahe AT-100 se conecta a múltiples sensores Apogee: SQ-110, SQ-120, SQ-500, con el SQ-620, SQ-640, albedómetro, S2-141 y más (en breve). Y realiza medidas de los sensores a alta resolución (convertidor analógico-digital de 24 bit).

El µCache cuenta con una garantía de 4 años y un excelente servicio al cliente.

La aplicación Apogee Connect es gratuita y está disponible para descargar en App Store o Google Play.

Validación de datos de Sensores de Inclinación

Ensayo de comparación de Sensores de Inclinación de la ATMOS 41

METER Group empezó a comercializar ATMOS 41 en enero de 2017 después de un extenso desarrollo y comprobaciones en todo en África, Europa y EEUU. Durante el desarrollo se realizaron numerosas comparaciones con sensores de calidad científica de otras marcas comerciales, sensores de Inlinación y humedad relativa del aire, piranómetros, anemómetros ….

Y también se comprobó en algunos casos, la variabilidad sensor a sensor en el tiempo.

Este es el resultado de las pruebas realizadas con los Sensores de Inclinación.

Sensor de Inclinación

La estación meteorológica todo en uno ATMOS 41 también incorpora un sensor de inclinación para detectar cuando haya un problema con la nivelación. Los sensores de inclinación se ajustan a cero durante la calibración en METER Group con la ayuda de nivel de burbuja.

La siguiente figura muestra el comportamiento de los sensores de inclinación de siete unidades ATMOS 41 monitorizadas en el campo de ensayo de METER Group. En azul aparece un sensor que se desniveló y a continuación se reparó. Cada acelerómetro mostró un nivel de ruido relativamente bajo y una alta repetibilidad.

Figura. Comportamiento de los sensores de inclinación.

Es importante destacar que los episodios ocasionales de mayor ruido son consecuencia de las elevadas velocidades del viento y de la inestabilidad del poste de instalación, por lo que no son atribuibles a problemas en el sensor.

En estos enlaces aparece más información sobre estos ensayos de METER Group Pullman y METER Group Alemania

ATMOS 41: asequible, precisa y fiable

La estación meteorológica ATMOS 41 proporciona medidas de 14 parámetros ambientales en un solo equipo. De manera que se puede instalar de forma rápida y sencilla. El único requisito es que ATMOS 41 esté nivelada en la parte superior de un mástil con visión del cielo directa.

Los parámetros climáticos, como la pluviometría, la temperatura del aire y la velocidad del viento pueden cambiar, considerablemente, en pequeñas distancias al aire libre. Sin embargo, en la mayoría de las observaciones meteorológicas se busca la exactitud y la precisión, de grado de investigación, frente a la resolución espacial. ATMOS 41 es el resultado de la optimización de estas dos necesidades. Y además, por un lado, disminuye las necesidades de mantenimiento, tan habituales. Y por otro, no es necesario pasar tanto tiempo configurando las estaciones. ATMOS 41 carece de partes móviles, así se evitan roturas y solo hay que calibrarla cada dos años.

Validación de datos de Barómetros

Ensayo de comparación de Barómetros de la ATMOS 41

ATMOS 41 METER Group LabFerrerLa estación meteorológica todo en uno ATMOS 41, de METER Group, empezó a comercializarse en enero de 2017 después de un extenso desarrollo y comprobaciones en África, Europa y EEUU. Durante el desarrollo se realizaron numerosas comparaciones con sensores de calidad científica de otras marcas comerciales, pluviómetros, barómetros, piranómetros, anemómetros ….

Y también se comprobó en algunos casos, la variabilidad sensor a sensor en el tiempo.

Este es el resultado de las pruebas realizadas con los barómetros.

Barómetros

Cada sensor de presión barométrica de la ATMOS 41 se calibra de forma individual con referencia de presión trazable NIST. La diferencia entre la referencia de presión y el sensor de presión debe ser de +/- 0,1 kPa. La diferencia se almacena en el sensor como una compensación.

La siguiente figura muestra el funcionamiento de siete unidades ATMOS 41 en las instalaciones de ensayo de METER Group. Las diferencias entre los valores superiores e inferiores de los barómetros son cercanos a 0,2 kPa.

En estos enlaces aparece más información sobre estos ensayos de METER Group Pullman y METER Group Alemania

ATMOS 41: asequible, precisa y fiable

La estación meteorológica ATMOS 41 proporciona medidas de 14 parámetros ambientales en un solo equipo. De manera que se puede instalar de forma rápida y sencilla. El único requisito es que ATMOS 41 esté nivelada en la parte superior de un mástil con visión del cielo directa.

Los parámetros climáticos, como la pluviometría, la temperatura del aire y la velocidad del viento pueden cambiar, considerablemente, en pequeñas distancias al aire libre. Sin embargo, en la mayoría de las observaciones meteorológicas se busca la exactitud y la precisión, de grado de investigación, frente a la resolución espacial. ATMOS 41 es el resultado de la optimización de estas dos necesidades. Y además, por un lado, disminuye las necesidades de mantenimiento, tan habituales. Y por otro, no es necesario pasar tanto tiempo configurando las estaciones. ATMOS 41 carece de partes móviles, así se evitan roturas y solo hay que calibrarla cada dos años.

Validación de datos de Anemómetros

Ensayo de comparación de Anemómetros de la ATMOS 41

METER Group empezó a comercializar la estación meteorológica todo en uno ATMOS 41 en enero de 2017 después de un extenso desarrollo y comprobaciones en todo el mundo. Durante el desarrollo se realizaron numerosas comparaciones con sensores de calidad científica de otras marcas comerciales, sensores de temperatura y humedad relativa del aire, piranómetros, anemómetros …. Y , en algunos casos, también se comprobó, la variabilidad entre sensores con el tiempo.

Este es el resultado de las pruebas realizadas con los anemómetros.

Anemómetros

La dirección y la velocidad del viento de las estaciones ATMOS 41 se comprobó en un laboratorio de análisis a terceros con certificación ISO 17025. Tanto la velocidad como la dirección del viento se midieron con anemómetros ultrasónicos sin partes móviles. Para registrar con precisión la dirección del viento es imprescindible que la N grabada en la ATMOS 41 esté orientada hacia el Norte verdadero. 

Los resultados datos se muestran en la siguiente figura (velocidad del viento) y en el cuadro (dirección del viento).

En estos enlaces aparece más información sobre estos ensayos de METER Group Pullman y METER Group Alemania

ATMOS 41: asequible, precisa y fiable

La estación meteorológica ATMOS 41 proporciona medidas de 14 parámetros ambientales en un solo equipo. De manera que se puede instalar de forma rápida y sencilla. El único requisito es que ATMOS 41 esté nivelada en la parte superior de un mástil con visión del cielo directa.

Los parámetros climáticos, como la pluviometría, la temperatura del aire y la velocidad del viento pueden cambiar, considerablemente, en pequeñas distancias al aire libre. Sin embargo, en la mayoría de las observaciones meteorológicas se busca la exactitud y la precisión, de grado de investigación, frente a la resolución espacial. ATMOS 41 es el resultado de la optimización de estas dos necesidades. Y además, por un lado, disminuye las necesidades de mantenimiento, tan habituales. Y por otro, no es necesario pasar tanto tiempo configurando las estaciones. ATMOS 41 carece de partes móviles, así se evitan roturas y solo hay que calibrarla cada dos años.

Validación de datos de sensores de Humedad Relativa del Aire

Ensayo de comparación de los sensores de Humedad Relativa la ATMOS 41

METER Group empezó a comercializar la estación meteorológica todo en uno ATMOS 41 en enero de 2017 después de un extenso desarrollo y comprobaciones en  África, Europa y EEUU. Durante el desarrollo se realizaron numerosas comparaciones con sensores de calidad científica de otras marcas comerciales, Humedad Relativa del aire, piranómetros, pluviómetros, anemómetros …. Y también se comprobó en algunos casos, la variabilidad sensor a sensor en el tiempo.

Este es el resultado de las pruebas realizadas con los sensores de Humedad Relativa del Aire

Humedad Relativa del aire

Los valores de temperatura del aire mejorados se emplean para corregir con mayor precisión la Humedad Relativa. Todos los sensores de humedad relativa de METER Group se calibran y verifican de forma individual para tres valores de humedad diferentes y se comparan con un higrómetro de punto de rocío.

La siguiente figura muestra la consistencia de los valores en los sensores ensayados. Los sensores se calibran en grupos de 1 a 16 sensores. El criterio de aceptación /rechazo empleado es 2% de Humedad Relativa, para los tres niveles de humedad ensayados. Los resultados de la calibración muestran una buena consistencia entre los sensores.

Los datos de Humedad Relativa y temperatura recogidos en campo se emplean para calcular la presión de vapor (kPa). La figura inferior muestra el comportamiento del sensor en campo durante un período de ocho días y proporciona una idea de la consistencia de los valores de presión de vapor.

 

Podeis encontrar más información sobre estos ensayos en estos enlaces de METER Group Pullman y METER Group Alemania

 

ATMOS 41: asequible, precisa y fiable

La estación meteorológica ATMOS 41 proporciona medidas de 14 parámetros ambientales en un solo equipo. De manera que se puede instalar de forma rápida y sencilla. El único requisito es que ATMOS 41 esté nivelada en la parte superior de un mástil con visión del cielo directa.

Los parámetros climáticos, como la pluviometría, la temperatura del aire y la velocidad del viento pueden cambiar, considerablemente, en pequeñas distancias al aire libre. Sin embargo, en la mayoría de las observaciones meteorológicas se busca la exactitud y la precisión, de grado de investigación, frente a la resolución espacial. ATMOS 41 es el resultado de la optimización de estas dos necesidades. Y además, por un lado, disminuye las necesidades de mantenimiento, tan habituales. Y por otro, no es necesario pasar tanto tiempo configurando las estaciones. ATMOS 41 carece de partes móviles, así se evitan roturas y solo hay que calibrarla cada dos años.

Ir arriba